Unitary Causal Quantum Stochastic Double Products as Universal Interactions I∗

نویسندگان

  • Robin L. Hudson
  • Yuchen Pei
چکیده

After reviewing the theory of triangular (causal) and rectangular quantum stochastic double product integrals, we consider examples when these consist of unitary operators. We find an explicit form for all such rectangular product integrals which can be described as second quantizations. Causal products are proposed as paradigm limits of large random matrices in which the randomness is explicitly quantum or noncommutative in character.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity

We consider a covariant causal set approach to discrete quantum gravity. We first review the microscopic picture of this approach. In this picture a universe grows one element at a time and its geometry is determined by a sequence of integers called the shell sequence. We next present the macroscopic picture which is described by a sequential growth process. We introduce a model in which the dy...

متن کامل

An analytic double product integral

The double product integral →← ∏ (1+λ(dA†⊗dA−dA⊗dA†)) is constructed as a family of unitary operators in double Fock space satisfying quantum stochastic differential equations with unbounded operator coefficients.

متن کامل

Universal Gates in Other Universes

I describe a new formalization for computation which is similar to traditional circuit models but which depends upon the choice of a family of [semi]groups – essentially, a choice of the structure group of the universe of the computation. Choosing the symmetric groups results in the reversible version of classical computation; the unitary groups give quantum computation. Other groups can result...

متن کامل

Algebraic theory of causal double products

Corresponding to each ”rectangular” double product [5] in the form of a formal power series R[h] with coefficients in the tensor product T (L) ⊗ T (L) with itself of the Itô Hopf algebra, we construct ”triangular” elements T [h] of T (L) satisfying ∆T [h] = T [h](1)R[h]T{h](2). In Fock space representations of T (L) by iterated quantum stochastic integrals when L is the algebra of Itô different...

متن کامل

Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions

We consider a Markovian approximation, of weak coupling type, to an open system perturbation involving emission, absorption and scattering by reservoir quanta. The result is the general form for a quantum stochastic flow driven by creation, annihilation and gauge processes. A weak matrix limit is established for the convergence of the interaction-picture unitary to a unitary, adapted quantum st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015